- 1. A curable resin composition comprising:
- (I) a reactive silicon group-containing polyoxyalkylene polymer wherein a introduction rate of a reactive silicon group into a molecular terminus is not less than 85% as determined by ¹H-NMR analysis, and
 - (II) an epoxy resin.
 - 2. The curable resin composition according to Claim 1 wherein the reactive silicon group-containing polyoxyalkylene polymer (I) is obtainable by reacting (a) a polyoxyalkylene polymer terminating in an unsaturated group of either the general formula (1):
 - $H_2C=C(R^1)-R^2-O-$ (1) in the formula R^1 represents a hydrocarbon group containing not more than 10 carbon atoms; R^2 represents a bivalent organic group containing 1 to 20 carbon atoms which contains one or more members selected from the group consisting of hydrogen, oxygen and nitrogen as the constituent atom,
 - or the general formula (2): $HC(R^1)=CH-R^2-O-$ (2)

in the formula R^1 represents a hydrocarbon group containing not more than 10 carbon atoms; R^2 represents a bivalent organic group containing 1 to 20 carbon atoms which contains one or more members selected from the group consisting of hydrogen, oxygen and

nitrogen as the constituent atom,

with (b) a reactive silicon group-containing compound of the general formula (3):

in the formula R³ and R⁴ each represents an alkyl group containing 1 to 20 carbon atoms, an aryl group containing 6 to 20 carbon atoms, an aralkyl group containing 7 to 20 carbon atoms, or a triorganosiloxy group of the formula (R')₃SiO-; when two or more R³ or R⁴ groups are present, they may be the same or different;

 10

15

20

25

10

15

20

R' represents a univalent hydrocarbon group of 1 to 20 carbon atoms; the three of R' groups may be the same or different; X represents a hydroxyl group or a hydrolyzable group; when two or more X groups are present, they may be the same or different; a represents 0, 1, 2 or 3; b represents 0, 1 or 2; b may be the same or different over m repeats of $-\text{Si}(R^3_{2-b})(X_b) - 0 - ;$ m represents an integer of 0 through 19; provided, however, that the condition of a + $\Sigma b \geq 1$ is satisfied,

(c) in the presence of a Group VIII transition metal catalyst.

3. The curable resin composition according to Claim 1 or 2

wherein a reactive silicon group-containing molecular chain terminus of the reactive silicon group-containing polyoxyalkylene polymer (I) is represented by the following formula:

 $(CH_3O)_2Si(CH_3) - CH_2 - CH(CH_3) - CH_2 - O -$

4. The curable resin composition according to Claim 1 to 3

comprising a compound having both a functional group capable of reacting with an epoxy group and a reactive silicon group

or a compound having both an epoxy group and a reactive silicon group.